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Preamble 
 

R is a powerful programming language that is one of the most commonly used for the 
study and analysis of data, statistics, or econometrics. This language (software) is open-source 
and available to be downloaded without charge. For this reason, the use of R has become 
extremely popular in both academia and in industry. 

The open-source nature of the software means that anyone is able to contribute to 
writing new packages and functions to analyse all types of problems. As new packages and 
functions were added R became easier to use to solve complex problems, and so grew in 
popularity. With close to 10,000 packages, R has a huge repository of functions and algorithms 
to work on issues related to data cleaning and management, data visualization, statistical 
inferences, spatial and temporal modelling, machine learning, etc. 

It is important to understand the difference between the software of R and of RStudio. 
R is the underlying software which runs all of the computations and code. RStudio however is 
the user interface that we will be working in directly. By using RStudio we are able to write 
and save multiple large scripts of code that run a selection of cleaning, statistics or modelling 
functions which can then be grouped according to research project. This lets us write up and 
comment on the code with notes associated to a given project and then save our workings for 
a later session. The alternative is line-by-line coding in R, which is unsuitable for large projects 
with multi-part code and scripts. 

The workshop is split into parts: the first focused on the basics of working with R 
objects and our data specifically, the second focuses on understanding spatial variables and 
pollution interpolation, and the third is the estimation of advanced spatial models which control 
for underlying spatial dependence – including the running and interpreting of diagnostics. We 
will be working with a database on housing locations and prices which we will combine with 
other spatial data to develop and build sophisticated spatial models for the real estate market 
of Lisbon, Portugal. 

The goal is not, however, to teach the intricate details about how to code and work 
efficiently in R - for many of you, this will be the first time working in a coding language. 
Learning the basics of R, or data science programming for other languages (e.g. Python, 
Matlab, Stata), could fill an entire course on its own. For this reason, the finalized code and 
functions are provided to you and we will work through it together section by section. As we 
go, part of the emphasis will of course be on what the relevant codes and algorithms for doing 
GIS in R are (technical aspects) while further emphasis will be put on how to interpret the 
results and diagnostics we obtain for robust spatial modelling (econometric aspects).  

The tools, methods and code/ functions that we use in this workshop are applicable to 
any data (which is in a similar format to ours). Using what we learn in this workshop, you will 
be able to update this code provided to run similar spatial modelling to new data. 
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Below you will find information on how to download and install both R and RStudio 
onto your personal computer. Both software are easy and free to install/ set up. Firstly, what is 
the difference between R and RStudio? R is the software and programming language which 
runs all the statistical and data analysis and computations. RStudio however is an Integrated 
Development Environment (IDE) which provides us with a user interface along with tools and 
features to make the most out of the computations done in R and allows the researcher to 
organize and better conduct analysis. 

A common example used to highlight the differences would be like considering R to be 
engine of a car while RStudio is the dashboard containing all the information and tools for the 
driver. 

 
Downloading R 
 
For Mac Users 

• From any internet browser, go to https://www.r-project.org/ 
• Click on the "download R" link under the "Getting Started" section. 
• This will take you to a list of potential CRAN Mirrors - a list of servers which host the 

files necessary to download in order for R to run. Here you can choose the mirror which 
is closest to you (one of the mirrors from Portugal). 

• On the next page we can select "Download R for (Mac) OS X" where you will be taken 
to a new page which has the most recent release of the R to download. 

• As of the time of writing, the most recent release for R is version 3.6. 
• Download the most recent .pkg file your download folder. 
• Click the .pkg file to open and follow the installation instructions provided. 

 
For Windows Users 

• From any internet browser, go to https://www.r-project.org/ 
• Click on the "download R" link under the "Getting Started" section. 
• This will take you to a list of potential CRAN Mirrors - a list of servers which host the 

files necessary to download in order for R to run. Here you can choose the mirror which 
is closest to you (one of the mirrors from Portugal). 

• On the next page we can select "Download R for Windows" where you will be taken to 
a new page which has the most recent release of the R to download. 

• As of the time of writing, the most recent release for R is version 3.6 – please ensure 
this is the version installed on your machine for this lab. 

• Click on "install R for the first time" to begin the download process - save the .exe 
file in your download folder. 

• Open the .exe file to open and follow the installation instructions provided. 
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Downloading RStudio 
 
For Mac Users 

• From any internet browser, go to https://www.rstudio.com/ 
• Choose the "Download RStudio" option. 
• Select the free "RStudio Desktop" version, which will bring you to a list of the most up 

to date version of RStudio for different operating systems. 
• Download the recommended file for the Mac OS X operating system. As of the time of 

writing, the most recent version is RStudio 1.1.463.  
• Download the .dmg file into your download folders and click to open and follow the 

installation instructions provided.  
 
For Windows Users 

• From any internet browser, go to https://www.rstudio.com/ 
• Choose the "Download RStudio" option. 
• Select the free "RStudio Desktop" version, which will bring you to a list of the most up 

to date version of RStudio for different operating systems. 
• Download the recommended file for the Windows operating system. As of the time of 

writing, the most recent version is RStudio 1.1.463. 
• Download the .exe file into your download folders and click to open and follow the 

installation instructions provided. 
 
 
And finally, some general notes and tips to keep handy as we work through R. 
 

• Make sure to save your work often as you are editing your code, adding notes, new 
functions, etc. Check your battery to make sure it will not run out during the session (if 
on a personal laptop). 

• Keep your coding scripts tidy, and use # at the beginning of a line to start a comment 
(# before anything in R means that what follows will not be run). Be liberal with using 
comments to ask yourself questions to answer later, remind yourself of how to calculate 
a variable, give title sections and explain what each set of functions is accomplishing – 
write your code in an easy to read format so that anyone without any background could 
pick it up and understand your process and estimation.  

• If you are unsure how a function or a package works, or what objects you need to insert 
into the function, you can type ??<FUNCTION/PACKAGE NAME>, and you will 
get the help and reference file for the package.  

• If you are stuck with how to code something, create a variable, run a model, etc. use 
Google, Stackoverflow, R Forums – many people have had the same questions before! 
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Section 1 - Working and Database Management in R(Studio) 

Lesson 00: Setting The Working Directory and Reading Packages 

We first need to define the working directory and packages we will be using for this course. 
The working directory is where we will store all of the files and outputs from this R session.  

Below we use the paste0() function to define a character vector specifying the file 
path-name where our working directory is, which we name wd. We define (<-) this 
here so that we do not have to keep writing out the long path-name each time we want 
to read or write a file. 

If we have downloaded the course folder to the Desktop, we can use the following codes to 
define the working directory. Since the naming convention of pathnames can differ between 
different operating systems (OS) (Windows, Mac, Linux), the different general conventions 
are specified below.  

 

# Setting the path on a Windows OS 

> wd <- paste0("C:/Users/", Sys.info()[[7]], "/Desktop/Spatial Environmental    
  Modelling") 

 

# Setting the path on a Mac OS 

> wd <- paste0("/Users/", Sys.info()[[7]], "/Desktop/Spatial Environmental    
  Modelling") 

 

# Setting the path on a Linux OS 

> wd <- paste0("/home/", Sys.info()[[7]], "/Desktop/Spatial Environmental  
  Modelling") 

 

setwd(wd) 

 

The Sys.info() function prints out all the system information for your specific 
computer. The 7th element of this block of information (which we retrieve using the 
[[7]] index) provides us with the username for your specific computer. 

Concatenated (pasted) together, we get "C:/Users/<USERNAME>/Desktop/Spatial 
Modelling" which is the path-name of the folder for where all our files are stored. 

Using this path string, wd, we set the directory using the setwd() function. 

 



 

6 
 

Next we have to install all the packages needed.  

A comprehensive list of all R packages, with brief description of its use, can be found 
at the following link. Depending on the type of analysis you wish to do, there is likely 
an R package available to help: 

https://cran.r-project.org/web/packages/available_packages_by_name.html 

With so many moving components of R (R, RStudio, Packages), it is crucial to make 
sure things are compatible and up to date. It is not uncommon to get errors in installing 
different versions of packages and different dependencies. 

For this lab we will be using version 3.6 of R (opening RStudio for the first time will 
show you the version number at the header). 

If ever you get package errors, the first step is to check the documentation of the 
package online, check the version of R and RStudio, and make sure that everything is 
compatible. 

# install.packages(c("sp", "spdep", "rgeos", "rgdal", "ggplot2", "geosphere",  
#   "gstat", "raster", "car", "lmtest", "tseries", "sandwich", "Matrix",  
#   "stargazer")) 

 

> library(sp) 

> library(spdep) 

> library(rgeos) 

> library(rgdal) 

> library(ggplot2) 

> library(geosphere) 

> library(gstat) 

> library(raster) 

> library(car) 

> library(lmtest) 

> library(tseries) 

> library(sandwich) 

> library(Matrix) 

> library(stargazer) 

 

Lesson 01: Read in Housing Dataset 

Let's now read in the csv (a variation of excel) file of our data. This database is a random sample 
of 400 observations representing dwellings across Lisbon, Portugal, with the relevant price, 
structural and local environmental attributes, and latitude and longitude (GPS) coordinates. 
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Here, our database (data frame, table, etc.) has one row for every observation with a 
number of columns each representing the different variables already available for the 
data. All observations have been cleaned so the database is complete and without any 
missing values – sometimes a significant amount of the work has to be dedicated to 
cleaning the database before any analysis can be done. 

The respective code to generate the range of GIS environmental variables for this lab 
are included, although they have been pre-generated for modelling purposes. 

To read in the database we use the read.csv() function. The file is located in the path-name 
previously specified by wd, in the Data folder, and is titled housing_sample.csv. 

i.e. we are reading in the file from: 

"C:/Users/<USERNAME>/Desktop/Spatial Modelling/Data/housing_sample.csv" 

It is always important to make sure that the text in the data is read correctly - especially 
when using data from Latin languages, since accents or other special characters may be 
read differently on different machines. In this data, we have already cleaned the variables 
and removed any accents. If accents do exist in the data and are not being read correctly, 
then try different fileEncoding={latin1 or UTF-8} parameters to get the 
correct reading. As a general rule of thumb, UTF-8 tends to read encoding well on 
Windows PC while latin1 tends to read encodings well on Mac OS X. 

The database has the following variables available: 

latitude|longitude.....................................GPS coordinates 

price....................................................Price in Euros 

area......................................Size of the dwelling in square meters 

new...........................Dummy variable (0, 1) for whether the dwelling is new 

pool............................Dummy variable for whether the dwelling has a pool 

parking...................Dummy variable for whether the dwelling has its own parking 

fireplace....................Dummy variable for whether the dwelling has a fireplace 

dwindows.................Dummy variable for whether the dwelling has double windows 

cabletv...................Dummy variable for whether the dwelling has cable television 

garden........................Dummy variable for whether the dwelling has a garden 

aircond..................Dummy variable for whether the dwelling has air conditioning 

view...................Dummy variable for whether the dwelling has a view of the Tagus 

elevator.....................Dummy variable for whether the dwelling has an elevator 

balcony.......................Dummy variable for whether the dwelling has a balcony 

pantry.........................Dummy variable for whether the dwelling has a pantry 

closet....................Dummy variable for whether the dwelling has a built in closet 
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baixa.....................Dummy variable for whether the dwelling is in the main CBD 

freguesia.................Categorical variable denoting the freguesia (neighbourhood) 

Pbldg.res...........................Percent residential buildings in the census tract 

Pbldg.non........................Percent non-residential buildings in the census tract 

Ppop.65............................Percent of population over 65 in the census tract 

Ppop.secondary.........Percent of population with secondary education in the census tract 

Ppop.higher...........................Percent of population with higher education 

Ppop.empl......................................Percent employed population 

Ppop.unemp...................................Percent unemployed population 

pop.ha................................................Population density 

bldg.ha................................................Building density 

dist.baixa.......................................Distance to the main CBD 

near.park...............................Distance to the nearest park (open space) 

avgD.park..............................Average distance to all parks (open space) 

near.shopping..............................Distance to nearest shopping centre 

avgD.shopping...........................Average distance to all shopping centres 

park.100......................................Number of parks in 100 meters 

park.500......................................Number of parks in 500 meters 

shopping.100...........................Number of shopping centres in 100 meters 

shopping.500...........................Number of shopping centres in 500 meters 

dist.tagus...................................Distance to the Tagus riverfront 

 
 
> housing.sample <- read.csv(paste0(wd, "/Data/housing_sample.csv"),  
  fileEncoding="latin1", stringsAsFactors=T) 

 

We can get a summary of the database variables using the summary() function and learn 
the dimensions of it using dim(). We need to make sure that our numeric variables are all 
indeed the numeric class, and our categorical variables are the factor class. 

 

> names(housing.sample) 
# ... 1 
> dim(housing.sample) 
# [1] 400  39 

> str(housing.sample) 
# ... 

 
1 “# …” in a code script indicates large outputs better viewed in RStudio. 
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> summary(housing.sample) 
# ... 

 

Exercises: 

Ex 01.01 – Using the subset() operation on the dataset how could we obtain the summary 
statistics (complete and for price only) for new dwellings and non-new dwellings? What about 
for those dwellings which have a view and those which do not? 

Ex 01.02 – Again by subset() and the dim() operations, how many dwellings in our 
sample are new? How many have 5 parks or less nearby? 

 

Lesson 02: Generating Basic Database Variables 

We can use the variables that we have in our database to generate other measures to use later 
in our econometric specification and for modelling. Calling on the variables as a vector (when 
we include the $ after the database we can specifically focus on one of the variables), we can 
operate on them as we would any numeric vector to create additional variables of interest. 

Let's take the ratio of two variables (divide) to get the PRICE PER SQUARE METER. 
 
> housing.sample$price.m2 <- housing.sample$price/housing.sample$area 

> summary(housing.sample$price.m2) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 1125    2055    2368    2468    2838    5538 

 
Multiply two variables together. Multiplying two dummy variables together tells us which 
dwellings have both of attributes like NEW DWELLINGS WHICH ALSO HAVE A GARDEN. 
Or multiplying the area by itself to get AREA SQUARED. 
 
> housing.sample$new.garden <- housing.sample$new*housing.sample$garden 

> housing.sample$area.2 <- housing.sample$area*housing.sample$area 

> summary(housing.sample$new.garden) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 0.00    0.00    0.00    0.01    0.00    1.00 
> summary(housing.sample$area.2) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 400    3813    7225   11594   12100   91809  
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Taking the (natural) log of a variable to get LOG OF PRICE or AREA. 
 
> housing.sample$ln.area <- log(housing.sample$area) 

> housing.sample$ln.price <- log(housing.sample$price) 

> summary(housing.sample$ln.area) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 2.996   4.123   4.443   4.452   4.700   5.714  

> summary(housing.sample$ln.price) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 10.82   11.85   12.15   12.23   12.52   13.82 

 
Many statistical models are built off the assumption of normally distributed data, and so often 
practitioners tend to take (natural) log transformations of all continuous variables – price, area, 
and especially distances. This may improve the model later on, and there is further some 
additional benefit to modelling log variables in terms of interpreting regression outputs. 

Note that in R the log() function by default returns the natural log, base e (ln). 
 
> housing.sample$ln.near.park <- log(housing.sample$near.park) 

> housing.sample$ln.avgD.park <- log(housing.sample$avgD.park) 

> housing.sample$ln.near.shopping <- log(housing.sample$near.shopping) 

> housing.sample$ln.avgD.shopping <- log(housing.sample$avgD.shopping) 

> housing.sample$ln.dist.baixa <- log(housing.sample$dist.baixa) 

> housing.sample$ln.dist.tagus <- log(housing.sample$dist.tagus) 

 

Exercises: 

Ex 02.01 – Using the baixa variable (a dummy 0/1 indicator of dwellings in the main CBD), 
how could we interpret an interaction between baixa and near.park? 
 
 

Lesson 03: Summary Statistics, Correlations, Scatter Plots 

There are a number of different summary statistics and ways to look at the data - means, 
distributions, standard deviations, etc. We can conduct summary statistics on the entire 
database, or call certain variables specifically. 

> summary(housing.sample) 

# ... 

> summary(housing.sample$price) 
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 50000  140000  190000  237764  275000 1000000  

> sd(housing.sample$price) 
# [1] 152551.6 
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> hist(housing.sample$price) 

# ... 

> hist(housing.sample$ln.price) 

# ... 

 

 

 

 

 

 

 

 

We can also run correlations on our numeric variables to study the relationship between them 
one at a time. We can use the cor() function and specify directly which variables we are 
interested in getting the correlation for. 

Another option is to use a small piece of code, unlist(lapply(housing.sample, 
is.numeric)), which gives us an index for which columns in our database are numeric. If 
a variable is not a numeric vector, then we cannot do any correlations, and so we drop it. Using 
this indexing function, we can apply the correlation function to our entire data set and get the 
correlation matrix between all numeric variables. 

The  ?lapply function is among the most powerful functions available in R. This 
allows us to apply a function (in this case the ?is.numeric function) across a list of 
objects (vectors, columns, rows, databases, etc.). This is widely used when you want to 
split up a process and increase efficiency.  

https://www.r-bloggers.com/using-apply-sapply-lapply-in-r/  

 
> cor(housing.sample[, unlist(lapply(housing.sample, is.numeric))]) 
# ... 
> cor(housing.sample$price, housing.sample$area) 
# [1] 0.8436786 

> cor(housing.sample$ln.price, housing.sample$ln.area) 
# [1] 0.860904 
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One of the most popular package in R is ggplot2. This is a data visualization packages with 
many, many functions and different parameters to make a range of plots, graphs, maps or 
charts. We will use a simple ggplot to look at the scatter plot/ correlation between (log) price 
and (log) area.  

Although we are using a quick plot, the ggplot website is a great resource to find 
different code parts and learn how to create really nice visual charts of whatever data 
you have. Chapter 3 of R For Data Science further has some nice walk-through 
tutorials on using ggplot2 and creating figures. 

 
> ggplot(data = housing.sample, mapping = aes(x = area, y = price)) + 

  geom_smooth(col = "black", size = 0.5) + 

  geom_point(size = 0.5) + 

  labs(x = "Area m^2", y = "Price") 

> ggplot(data = housing.sample, mapping = aes(x = ln.area, y = ln.price)) + 

  geom_smooth(col = "black", size = 0.5) + 

  geom_point(size = 0.5) + 

  labs(x = "ln(Area m^2)", y = "ln(Price)") 

 

 
 
 
As we would expect, we see a positive correlation between price and the size of a dwelling. 
Taking the log transformation minimizes the impact from outlier observations and shows a 
clearer relationship between the variables.  

We do not want, however, there to be any correlation between different groups of variables 
included in a model and used to explain price – which would give rise to multicollinearity. We 
can look at pairwise comparisons of similar variables to select the most appropriate to include 
in the model. For example, the distance to the riverfront and the distance to the primary business 
district – which is located along the river – are likely highly correlated and should therefore 
not be included in the model at the same time. 
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> ggplot(data = housing.sample, mapping = aes(x = ln.dist.baixa, y =  
  ln.dist.tagus)) + geom_smooth(col = "black", size = 0.5) +  
  geom_point(size = 0.5) + labs(x = "ln(Distance to Baixa)", y = "ln(Distance to  
  River)") 

> cor(housing.sample$ln.dist.baixa, housing.sample$ln.dist.tagus) 

# [1] 0.5531924 

 

 

Exercises: 

Ex 03.01 – Based on the summary statistics, what can we say about the data we have on price? 
Is there any benefits or drawbacks of using one measure of price over the other (natural log 
versus direct level) for continued analysis? 

Ex 03.02 – Here are a few references which provide some good examples of how to create a 
range of different plots with a variety of colours, styles, symbols, etc. Play around with the 
parameters and see how you can alter the above plots to make them more visually appealing. 
Try making the point symbols differ according to the new dwellings variable. 

R for Data Science Chapter 3....................https://r4ds.had.co.nz/data-visualisation.html 

ggplot website...................................................https://ggplot2.tidyverse.org/index.html 

Guide for Colours in R..............http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf 

Guide for Symbols in R.....http://www.sthda.com/english/wiki/r-plot-pch-symbols-the-
different-point-shapes-available-in-r 
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Section 2 – Spatial Interpolation of Pollution Levels 

Lesson 04: Loading and Generating Spatial Data (Points, Polygons, Rasters) 

Since we have the latitude and longitude coordinates in the database, we can geo-reference the 
data and create a spatial database giving us the point locations across the city. 

One important point of working with spatial data is to make sure that it is correctly 
projected. There are many different coordinate reference systems (CRS) - some can be 
based on relative global coordinates such as GPS (latitude and longitude which we 
have), while others may be projected and based on distances from equators. 
The primary CRS we will rely on is the WGS84 standard. This 3D coordinate system 
considers the earth to be a sphere and locations on the sphere are denoted by latitude 
and longitude (GPS) coordinates.  
While the WGS84 is a global spherical projection (equivalent values no matter where 
on the earth we are located), other CRS may represent a projected system where the 
earth is flattened and looked at as a standard 2D map. In these flattened projections, it 
does matter where in the world we are and how we flatten the map. Different cities, 
countries and regions may all have different CRS’s which are denoted by the EPSG 
code – a good reference for finding local EPSG codes is:  

https://www.spatialreference.org/  
For Peru – the code for the projected EPSG is 24891:  
“+init=epsg:24891 +proj=tmerc +lat_0=-6 +lon_0=-80.5 +k=0.99983008 +x_0=222000 
+y_0=1426834.743 +ellps=intl +towgs84=-288,175,-376,0,0,0,0 +units=m +no_defs” 

If we are creating a spatial version of the dataset by ourselves inside of R (instead of 
loading a spatial file directly), then we need to make sure the projection we set matches 
the type of coordinates we have. Since our observations are in GPS latitude and 
longitude, we specify the respective CRS when we set the spatial projection. 
If we are reading in a spatial file – the projection is embedded directly, but before 
working with the file, we have to make sure that the pre-defined projection aligns with 
the rest of the data – it is crucial that when we create spatial variables or do any spatial 
analysis that the CRS’s are correct. 
 

> housing.sample <- SpatialPointsDataFrame(cbind(housing.sample$longitude,  
  housing.sample$latitude), housing.sample) 

> proj4string(housing.sample) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84  
  +no_defs") 

 
 

Take note that now housing.sample is no longer a simple database, but is a spatially 
referenced database. To call on only the data part of the spatial database (the simple 
database from before), we can use housing.sample@data. 
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> housing.sample 

# class       : SpatialPointsDataFrame  
# features    : 400  
# extent      : -9.21725, -9.105303, 38.69277, 38.78732  (xmin, xmax, ymin, ymax) 
# coord. ref. : +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0  
# variables   : 50 
# ... 

> summary(housing.sample) 

# Object of class SpatialPointsDataFrame 
# Coordinates: 
#                 min       max 
# coords.x1 -9.217251 -9.105303 
# coords.x2 38.692772 38.787320 
# Is projected: FALSE  
# proj4string : 
# [+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0] 
# Number of points: 400 
# ... 

> summary(housing.sample@data) 

# ... 

> summary(housing.sample@data$price) 

# Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
# 50000  140000  190000  237764  275000 1000000  

 
We can do a quick plot of the data to see if the mapping 'appears' to be correct. 
 
> plot(housing.sample) 

 
If we want to look at a simple plot of price distributions we can use ggplot to do a (non-spatial) 
scatter plot using latitude and longitude as the X-Y coordinates and shading the intensity by 
the price level. Using the @data suffix on the housing.sample, allows us to use it like we 
would any other data frame. 
 
> ggplot() + geom_point(data=housing.sample@data, aes(x=longitude, y=latitude,  
  col = price)) + scale_colour_gradient(low = "blue", high = "red") 
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We will now introduce some measures of neighbourhood pollution using a spatial interpolation 
on yearly average pollution levels from monitoring stations around the city. The data is stored 
in a standard .csv file which includes the monitoring station latitude and longitude, and the 
average PM10 pollution values from all observations monitored in 2007. This gives us a proxy 
for the level of pollution as it varies across the city in the year of our housing sales. 

The first step is to read in the pollution data .csv file and translate this into a spatial points data 
frame. We first generate a variable which is the (natural) log value of pollution concentration 
– partially for a statistical reason. The interpolations we are using – the Inverse Distance Weight 
family – works best when the data is normally distributed, and taking the log value before will 
tend to improve the interpolation estimates. This is of course case specific and based on the 
data we are using. 

 
> pollution <- read.csv(paste0(wd, "/Data/pollution_2007.csv"),  
  stringsAsFactors=T) 
> pollution$lnPM10 <- log(pollution$PM10.2007) 
> pollution <- SpatialPointsDataFrame(cbind(pollution$LONGITUDE,  
  pollution$LATITUDE), pollution) 
> proj4string(pollution) <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84  
  +no_defs") 

We have to build the canvas onto which we are going to interpolate the data. We must first 
build an empty raster file, and then give each pixel in the raster a value based on the 
interpolation model later on. To build the raster, we have to get the boundary extents of our 
data and then cut this area up into our raster pixels. The bbox function below will give the 
boundary box which covers the data of interest (the pollution stations), and then we use the 
extent function to get the coordinate values of this box.  

Since we want to use normal distance measures to build this raster, both these functions 
are applied to spatially transformed data. Notice that the CRS of our original pollution 
points are in the long-lat projection (based on GPS coordinates) and standard 
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Euclidean distances don’t work here. The new projection we are using is based in 
meters and so we can calculate distances as we would normally. 

Using the four coordinate points of this box – which are saved as components of the int.unit 
object: int.unit[1], int.unit[2], int.unit[3], int.unit[4] – we can create a raster using the raster 
function, and specify that we want to have pixel sizes of 100 meters. Because our CRS is in 
meters, we specify in the function that the number of columns should be equal to the absolute 
value of the x distance divided into blocks of 100, and conversely for the number of rows: 
ncol=abs(int.unit[1]-int.unit[2])/100.  

Now that we have the empty raster grid, we have to give it a coordinate projection. Because it 
was built under the Euclidean-distance friendly projection CRS("+init=epsg:3763"), 
we have to first specify this as the CRS of the raster file. But then – since the rest of our data 
is in the long-lat projection, and we want the raster to align with everything else, we do a 
reprojection back to the projection of interest. 

> int.unit <- extent(bbox(spTransform(pollution, CRS("+init=epsg:3763")))) 
> int.unit <- raster(ncol=abs(int.unit[1]-int.unit[2])/100, nrow=abs(int.unit[3]- 
  int.unit[4])/100, xmn=int.unit[1], xmx=int.unit[2], ymn=int.unit[3],  
  ymx=int.unit[4]) 
> proj4string(int.unit) <- CRS("+init=epsg:3763") 
> int.unit <- projectRaster(int.unit, crs="+proj=longlat +ellps=WGS84  
  +datum=WGS84 +no_defs") 

The next step is to define the aggregation area. This will be the polygon areas to which we will 
take the average pollution from across the entire raster. Here we use the freguesia units as the 
neighbourhood definition – after we get our raster picture of pollution, we aggregate up to find 
the average value of pollution for each freguesia. This gives us a measure of neighbourhood 
pollution we can merge with our housing data. 

> agg.unit <- spTransform(readOGR(dsn = paste0(wd, "/Data"), layer =  
  "freguesias"), CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")) 

> agg.unit <- agg.unit[,c("FREGUESIA")] 

Exercises: 

Ex 04.01 – Plotting the direct price variable as we did in ggplot() may not always highlight 
the full pattern if outliers are present and driving the visualizing – try plotting different 
variables, and in particular the log of price, to see if other variables change over space. 

 

Lesson 05: Inverse Distance and Inverse Squared Distance 

We now want to predict pollution levels across space based on a limited sample of available 
observations from monitoring stations across the city. We will focus on a broad family of 
interpolation methods all based on weighting estimated pollution levels at unknown areas of 
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the raster (map) conditional on the inverse distance from given known pollution levels 
(monitoring stations). There are two parameters that we need to specify. 

First we have to specify the number of nearest neighbours, or from which monitoring stations 
pollution observations will be taken. The default is to use all stations, however in some contexts 
there may be some rational to indicate that only observations in direct proximity are useful for 
prediction your variable of interest.  

Secondly, we have to specify any weight that we may be giving to the inverse distance. Most 
commonly, this is left to have a weight of 1 or 2 – which give us the Inverse Distance and the 
Inverse Squared Distance models respectively. If we think that the rate at which the influence 
decays fast over space, then the squared distance may more accurately capture this effect. 

There is a general mathematical formula which can be used to represent all the specific cases 
of this family of models. Here, ℙ(𝑥) represents the (log) pollution level to be predicted/ 
estimated at location 𝑥. 𝑁 is the number of neighbours (monitoring stations) that we consider 
in the prediction (the default is to use all observations which we adopt here).  

If the distance between the prediction location and a monitoring station is zero 𝑑(𝑥, 𝑥() = 0, 
then the location is exactly the monitoring station and we take ℙ(𝑥) = ℙ(𝑥(). If the prediction 
location does not have a monitoring station, then the prediction pollution is given as the 
weighted average of observed pollution levels ℙ(𝑥() from all nearby stations 𝑁, weighted by 
and inverse distance 1 𝑑(𝑥, 𝑥(),⁄  and power parameter of 𝜌. 

 

ℙ(𝑥) = /
∑ [1 𝑑(𝑥, 𝑥(),⁄ ]3
(45 ⋅ ℙ(𝑥()
∑ [1 𝑑(𝑥, 𝑥(),⁄ ]3
(45

ℙ(𝑥()

   if   
   if   

𝑑(𝑥, 𝑥() ≠ 0
𝑑(𝑥, 𝑥() = 0  

 

The spatial interpolation can be done in one line of code if everything is neatly organized and 
in the correct format. The first function to define is gstat(). This is how we define general 
spatial interpolation models and is very flexible. 

gstat(formula=lnPM10 ~ 1, locations=pollution, set=list(idp=1))  

The formula specifies the variable we want to interpolate, and whether we want to condition 
this interpolation on any other covariates. For example, if we had continuous elevation data for 
every raster grid our interpolation model could be based not only on the inverse distance but 
further by the geography of the city. This is outside the scope, and we specify the base model 
of lnPM10 ~ 1 to indicate that our interpolation is only based on distances between 
observations. 

We specify the locations (spatial points) of our data, and then include the additional parameter 
of idp (inverse distance power) to indicate any power function we want to set.  
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> sp.interpolation <- mask(crop(interpolate(int.unit, gstat(formula=lnPM10 ~ 1,  
  locations=pollution, set=list(idp=1))), agg.unit), agg.unit) 

> plot(sp.interpolation) 

> plot(exp(sp.interpolation)) 

 

> RMSE <- list() 

> for (k in 1:nrow(pollution)){ 
    init.val <- c(3, 2) 
    RMSE[[k]] <- sqrt(as.numeric((predict(gstat(formula=as.formula("lnPM10 ~ 1"), 
      locations=pollution[-k,], set=list(idp=1)), newdata=pollution[k,], 
      debug.level=0)$var1.pred - 
    pollution[k,][,c("lnPM10")]@data)^2)) 
  } 
> mean(unlist(RMSE)) 

# [1] 0.1451815 

By changing the parameter values, we are able to specify and predict pollution values based on 
the different statistical models of interest – and then compare the different methods together. 

> sp.interpolation <- mask(crop(interpolate(int.unit, gstat(formula=lnPM10 ~ 1, 
locations=pollution, set=list(idp=2))), agg.unit), agg.unit) 

> plot(sp.interpolation) 

> plot(exp(sp.interpolation)) 

 

> RMSE <- list() 

> for (k in 1:nrow(pollution)){ 
    init.val <- c(3, 2) 
    RMSE[[k]] <- sqrt(as.numeric((predict(gstat(formula=as.formula("lnPM10 ~ 1"), 
      locations=pollution[-k,], set=list(idp=2)), newdata=pollution[k,], 
      debug.level=0)$var1.pred - 
    pollution[k,][,c("lnPM10")]@data)^2)) 
  } 

> mean(unlist(RMSE)) 

# [1] 0.131618 

 

The second function is the interpolate() where we provide the raster onto which we want 
to interpolate, int.unit, and the gstat() model we want to use. Finally, the mask() and 
crop() functions are ways to remove the excess pixels around the area of interest. We are 
only interested in looking at pollution in Lisbon to aggregate on, so we remove any excess.  

We can plot() raster’s directly to see the distribution of the interpolated pollution over space. 
We can further apply a transformation, like the exponential exp(), to the raster to convert 
back from (natural) log pollution levels to the direct PM10 concentration. 
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Inverse Distance (exp. Transformed)                Inverse Squared Distance (exp. Transformed) 

 

A small line of code has been included after each interpolation to calculate the root mean 
squared error (RMSE) of prediction – a measure of how well our model results are able to 
match the true observed value of the data. If predicted values are very close to observed values 
at a given location, then we have low deviation between these values and the RMSE statistic, 
which weights this deviation, would be lower and indicate a better fit.  

𝑅𝑀𝑆𝐸 = √[𝑎𝑣𝑔((𝑥 − �̅�)B)] 

The general idea is to iteratively (in a for loop) remove one monitoring station at a time. We 
first remove the monitoring station and then estimate the output using the model we are 
interested in evaluating. This gives us a predicted value from the model and a true observed 
value from a monitoring station which we can compared together using the RMSE statistic.  

Doing this systematically, we get an individual statistic for every time we leave one of the 
monitoring stations out, and taking the average of these values provides a measure of fit for the 
interpolation model that we can compare against other models. Here, the model is a better fit 
in using the inverse squared distance over the unweighted inverse distance.  

Lesson 06: Neighbourhood Level Aggregation 

We select the best interpolation model based on the RMSE. In our case, this is the inverse 
squared distance using all monitoring stations in the sample. Setting this as the selected 
interpolation sp.interpolation, we can aggregate to get the average value of the raster within 
the chosen freguesia neighbourhood boundaries. 
 
> sp.interpolation <- mask(crop(interpolate(int.unit, gstat(formula=lnPM10 ~ 1,  
  locations=pollution, set=list(idp=2))), agg.unit), agg.unit) 

> sp.aggregation <- do.call(rbind, lapply(extract(sp.interpolation, agg.unit),  
  FUN=mean)) 

> agg.unit <- data.frame(agg.unit, lnPM10 = sp.aggregation) 

 

> housing.sample <- merge(housing.sample, agg.unit, by.x="freguesia",  
  by.y="FREGUESIA", all.x=T, sort=F) 
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Here we are applying the extract function between the raster and the aggregation units, and 
then apply the mean across a list to get the average value of raster pixels within each 
neighbourhood unit. Finally, we bind together this output into a list using the rbind code and 
combine it with our neighbourhood data frame. The agg.unit is therefore now a data frame with 
the freguesia ID and aggregate average value of log pollution interpolated from an Inverse 
Squared Distance Weight model – this can easily be merged with our original data. 

When merging on a spatial database (housing.sample) it is crucial to include sort=F 
- if we do not, then we risk mixing up the locations of the data. 

Exercises: 

Ex 06.01 – Changing the gstat parameters can allow us to include a power function on the 
Inverse Distance Weight or to take the interpolation using either all data from all monitoring 
stations or a select sample of the nearest. Using these parameter variations, try modelling and 
comparing a few different interpolation models. 
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Section 3 - Spatial Modelling, Diagnostics and Techniques 

Lesson 07: Fit Baseline OLS Model and Run Diagnostics 

After cleaning and generating the variables above, we have a database with the following types 
of variables that we can use to model. 

- Price and price per square meter.................................P 
- Size and structural characteristics................................X 
- Neighbourhood (census) characteristics.............................N 
- (Environmental) Locational attributes (distance to parks, pollution)...........L 
- Freguesia identifiers.......................................... F 

We will start with a baseline model with none of the spatial variables and then build up to 
improve the model with different specifications as we add in more detailed variables. The 
baseline model being estimated is the OLS specification: 

ln(P) = β0 +  β1*X + ε 

Some notes on choosing the best model: We have generated a large number of variables that 
we can use to specify our model. Fitting a model is as much an art as it is a science. Keep in 
only the most relevant variables which can easily be interpreted. Make sure that variables 
included are not capturing the same effect/ correlated. Often, the best model is the simplest 
most parsimonious one. The lm() function runs the OLS specification, and we will save all 
the models in an empty list together. 

> OLS.baseline <- list() 

> OLS.baseline[[1]] <- lm(ln.price ~ area + area.2 + new + pool + parking +  
  fireplace + dwindows + garden + aircond + view, na.action=na.omit, data =  
  housing.sample@data) 
> summary(OLS.baseline[[1]]) 
 
# ... 

We can save the OLS model to print it out later when we want. If we use the summary() 
function on the regression model, we get information on: coefficients and standard errors; p-
values; F statistic; and R-squared. More detailed diagnostics can be obtained from various other 
packages in R. 

The first model of OLS.baseline[[1]] is the full, comprehensive structural model which 
includes all structural variables. Given our small sample size however, we cannot include too 
many variables and so we can remove variables with very high p-values which are not well 
explained in the model, and we can fit a more parsimonious model, OLS.baseline[[2]]. 

> OLS.baseline[[2]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view, na.action=na.omit, data=housing.sample@data) 
> summary(OLS.baseline[[2]]) 
 
# ... 
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Model OLS.baseline[[2]] is a subset, more parsimonious version of the full 
OLS.baseline[[1]]. Since one model is nested within the other, we can run an ANOVA 
test to determine whether we gain any additional information from using the more complex 
model (OLS.baseline[[1]]) rather than the simpler model (OLS.baseline[[2]]). 
We run this with the anova() function below, testing whether any significant information is 
gained by using the more complex model. 

The null hypothesis of the ANOVA test is that the coefficients for all variables 
in OLS.baseline[[1]] that are not in OLS.baseline[[2]] are zero, with the 
alternative being that those coefficients are not zero. Our results below do not reject the null 
hypothesis (with a p-value of 0.6359), and thus we can continue our analysis with the more 
parsimonious model OLS.baseline[[2]] without any loss of information. 

> anova(OLS.list[[1]], OLS.list[[2]]) 
# ... 

 

There are a wide range of regression diagnostics that we can examine - some based on statistics 
tests, others based on more visual cues. 

Variance Inflation Factor (VIF): indication of whether any of the control variables are 
correlated with each other (multicollinearity). Rule of thumb being that we want the value of 
this to be less than 10 for the variables of interest. 

 
> lapply(OLS.list, vif) 
# ... 

 
 
Akaike Information Criterion (AIC): this is a measure of the quality of fit of the model. We 
cannot however interpret this in isolation - we must always compare the AIC of one model 
against the AIC of the other model to determine which fits better the data. Rule of thumb is 
that we select the model with the lowest AIC value. 
 
 
> lapply(OLS.list, AIC) 
# ... 

 
 
Sum of Squared Errors (SSE): a measure of how well the model fits the data, or how far off the 
predicted values are from their actual values. A lower value of SSE indicates a better fitting 
model. We use the anova() function on the model to obtain the residual sum of square and 
then extract it using the correct indexing. 
 
 
> lapply(OLS.list, function(x) tail(anova(x)[,2], 1)) 
# ... 
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Normality of Residuals: one of the key assumptions of the OLS model is that errors have 
residuals with a conditional mean of zero. The Jarque-Bera test statistic tests the normality of 
a data series by comparing the mean and the skewness of the distribution. The null hypothesis 
here is that the residuals have a normal distribution with mean zero, and so we do not want to 
reject the null. 
 
> lapply(OLS.list, function(x) jarque.bera.test(x$residuals)) 
# ... 

> hist(OLS.list[[1]]$residuals) 
# ... 

> hist(OLS.list[[2]]$residuals) 
# ... 

 
 
This test is sensitive to small samples however, and should be interpreted with caution. One 
way to double check this assumption is to simply plot a histogram of the residuals to examine 
their distribution - they should look normally distributed around a mean of zero. 
 

 
 

Residual Auto-correlation: In our OLS specification, we require that there is no correlation 
among the terms of our residuals. The Durbin-Watson and Breusch-Godfrey test statistics test 
for this type of correlation in the residuals to inform on whether the error term may exhibit 
correlation. 

The Durbin-Watson tests for 1st order correlation between direct observations. The null 
hypothesis states that there is no serial correlation among the residuals, while the alternative 
indicates significant correlation. 

The Breusch-Godfrey test is a more general version testing broader (larger than 1st order) 
correlation between all residuals. This statistic is more appropriate for spatial data since it tests 
for the residual correlation between, not just adjacent (1st degree) observations, but 
observations which may have unaccounted influences due to proximity which would be missed 
under the Durbin-Watson statistic. 

> lapply(OLS.list, dwtest) 
# ... 
> lapply(OLS.list, bgtest) 
# ... 
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Heteroskedasticity: It is further important to test whether or not the residuals of our model 
significantly depend on the independent covariates. If the variance of the residual terms varies 
significantly with values of the x variables, then we are said to have heteroskedasticity in the 
model. 

We can test formally for heteroskedasticity using the Breusch-Pagan test statistic. The null 
hypothesis is that there is no heteroskedasticity and the variance of the errors does not depend 
on the covariates. If not addressed, heteroskedasticity may potentially impact the significance 
and interpretation of our covariates. 

We almost always find some indication of heteroskedasticity in our models, and so it is 
common to simply always provide the correction to deal with this. If we correct our model 
using heteroskedastic consistent standard errors (or White's standard errors) we address this 
problem directly. 

The estimation of the model using heteroskedastic consistent standard errors can be done using 
coeftest(OLS.list[[2]], function(x) vcovHC(x, type="HC0")). 

 
> lapply(OLS.list, bptest) 
# ... 
> lapply(OLS.list, function(y){ coeftest(y, function(x) vcovHC(x, type="HC0")) }) 
# ... 

 

A Note on Printing Out Results: 

You may notice that we are simply printing out the results directly into the R terminal and 
reading/ interpreting them there. This is fine for looking at one, maybe two, models, but when 
we want to compare many different models and diagnostics this is not feasible to constantly be 
printing out the results in the terminal. 

Because there are many different types of objects in R, and especially since the standard OLS 
and the spatial models have different classes and information associated to them, it is not 
always easy to print out all the information that you need consistently. 

What many researchers do is to manually build and export output tables, which is obviously 
outside the scope of this workshop. There would be not much benefit to spending too much 
time on learning the exporting of data while giving up on learning more detailed econometric 
techniques. For this reason, all model outputs have already been cleaned and packaged together 
in an excel file so that we can make easy use of referencing the different models and 
diagnostics.  

The function most commonly used to print out the models however is the stargazer() 
package. This is a really well developed package for exporting nice tables on all sorts of 
models, with many manual options for changing how things are organized and what data is 
presented. 
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There are many good references for how to print out single or multiple models in 
stargazer() and how to include additional diagnostics. 

https://www.rdocumentation.org/packages/stargazer/versions/5.2.2/topics/stargazer 

https://cran.r-project.org/web/packages/stargazer/vignettes/stargazer.pdf 

For the sake of reference, below is a short example on how you could export a very simple 
OLS output with the model results. Using the above references, it is possible to expand on this 
output to include additional diagnostics and parameters. One of the most important alterations 
to the simple printout that we can make is to specify that the standard errors to be printed should 
be the robust standard errors which are estimated from the coeftest() function above. 

> stargazer(OLS.list, type="html", title="OLS Baseline Model (Robust S.E.)",  
  style="aer", star.cutoffs=c(0.10, 0.05, 0.01), 
  se = lapply(OLS.list, function(y){ coeftest(y, function(x) vcovHC(x,    
  type="HC0"))[,2] }), digits = 5, out=paste0(wd, "/OLS_Baseline.htm")) 

 

Exercises: 

Ex 07.01 – Try other ways of modelling the non-linearity of area. Instead of using squared 
values, do results/ interpretations change when we use logs? What is the impact of being 
simultaneously in a new house with a garden? Check that this variable is not correlated too 
strongly with any others. 

Ex 07.02 – How could we add in the results of the diagnostics from the Breusch-Pagan test 
statistics to the stargazer() output using the add.lines parameter? 

Lesson 08: Enhancing the Baseline Model with GIS Variables 

We can indirectly include relative space into our model through our GIS variables created. 
These variables allow us to consider the impact of a dwelling's location relative to important 
points/ areas of the city. We update the baseline specification to now include the range of 
neighbourhood and locational attributes of the dwelling: 

ln(P) = β0 +  β1*X +  β2*N +  β3*L + ε 

Notice that we created a large number of structural and locational variables. We have to test 
out different combinations of variables to find the best, most concise, model. We will need to 
take into account that some variables capture similar effects and think about how best to 
interpret and obtain the effects of interest. Note also that the number of variables we can include 
depends directly on the number of observations we have in our database. In our simple 
example, we will thus be limited to including only the most relevant characteristics. 

 
> OLS.gis <- list() 
> OLS.gis[[1]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp, na.action=na.omit, data=housing.sample@data) 
> summary(OLS.gis[[1]]) 
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# ... 
 
> OLS.gis[[2]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.baixa), na.action=na.omit,  
  data=housing.sample@data) 
> summary(OLS.gis[[2]]) 
# ... 
> OLS.gis[[3]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.tagus), na.action=na.omit,  
  data=housing.sample@data) 
> summary(OLS.gis[[3]]) 
# ... 

 
We can try different combinations of our locational variables to test different models. We need 
to limit the number of variables which may be capturing the same effect (collinear) - for 
example, it may not be possible (given our small sample) to capture simultaneously the effect 
from being located in Baixa and proximity to the riverfront. 

My modelling strategy here is to systematically introduce variables in groups – starting with 
structural characteristics, next including the best measure of neighbourhood socio-economic 
status (percentage of population unemployed), and then location to the core downtown/ 
riverfront. At every stage, since we have many variables capturing the same effect, different 
models should be run and tested, moving forward and evolving the model only when you find 
the best model to improve upon. 

If the baseline structural variables are not modelled correctly and yielding non-
consistent outcomes for example, it would make no sense to build off this model by 
trying to include environmental effects. 

> OLS.gis[[4]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.baixa) + lnPM10 + ln.avgD.park ,  
  na.action=na.omit, data=housing.sample@data) 
> summary(OLS.gis[[5]]) 
# ... 
> OLS.gis[[5]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.tagus) + lnPM10 + ln.avgD.park ,  
  na.action=na.omit, data=housing.sample@data) 
> summary(OLS.gis[[6]]) 
# ... 

Using the stargazer package and format that we already specified, we can easily collect all 
these models and compare them in one comprehensive table. Here, the different measures of 
distance to Baixa and the Tagus riverfront are all important variables to include, but highly 
correlated to each other. So, we can simultaneously model the three different specifications, 
print them out in one comprehensive table, and then compare all the diagnostics and results 
across specifications and combinations of variables. This makes the model selection process 
robust, comprehensive and systematic. 

> stargazer(OLS.gis, type="html", title=" OLS with GIS Variables (Robust S.E.)",  
  style="aer", star.cutoffs=c(0.10, 0.05, 0.01), 
  se = lapply(OLS.gis, function(y){ coeftest(y, function(x) vcovHC(x,    
  type="HC0"))[,2] }), digits = 5, out=paste0(wd, "/OLS_GIS.htm")) 
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Exercises: 

Ex 08.01 – Discussion: Compare the SSE, variable significance, AIC, R2, and other measures 
of model fit – not only in terms of the statistics but from the point of view of what questions 
you want to answer with your model. Which model would you choose? 

Lesson 09: Controlling for Location Price Differentials 

We update the baseline specification now to include fixed effects for identifying in which area 
of the city a dwelling is located. This is one way in which we can use the OLS estimation 
procedure to model the price difference between different areas of the city, accounting for the 
unobservable (un-measurable) freguesia level local attributes. 

ln(P) = β0 +  β1*X +  β2*N +  β3*L +  β4*F + ε 

Our freguesia variable is a categorical (non-numeric character vector) variable, and we 
can use this to manually generate an indicator {0, 1} variable to look at the price impact of 
being located in a particular area of the city. 

The level of how fine a resolution we can estimate depends on the number of observations that 
we have. If we had a complete coverage of housing values over time and space for example, 
we would potentially be able to estimate the impact of living on a specific section of a street or 
road. With fewer samples, we are limited to estimating the average price impact of living in 
broad areas of the city – which we define into four groups using collections of freguesias. 

 
>  housing.sample@data$BairroZone <- NA 
>  housing.sample@data$BairroZone <-  
    ifelse(as.character(housing.sample@data$freguesia)=="Sao Paulo" | 
    as.character(housing.sample@data$freguesia)=="Santa Catarina" | 
    as.character(housing.sample@data$freguesia)=="Merces" | 
    as.character(housing.sample@data$freguesia)=="Sao Mamede" | 
    as.character(housing.sample@data$freguesia)=="Coracao De Jesus" | 
    as.character(housing.sample@data$freguesia)=="Sao Jose" | 
    as.character(housing.sample@data$freguesia)=="Pena" | 
    as.character(housing.sample@data$freguesia)=="Anjos" | 
    as.character(housing.sample@data$freguesia)=="Graca" | 
    as.character(housing.sample@data$freguesia)=="Sao Vicente De Fora" | 
    as.character(housing.sample@data$freguesia)=="Santa Engracia" | 
    as.character(housing.sample@data$freguesia)=="Castelo" | 
    as.character(housing.sample@data$freguesia)=="Encarnacao" | 
    as.character(housing.sample@data$freguesia)=="Madalena" | 
    as.character(housing.sample@data$freguesia)=="Martires" | 
    as.character(housing.sample@data$freguesia)=="Sao Cristovao e Sao Lourenco" | 
    as.character(housing.sample@data$freguesia)=="Sao Miguel" | 
    as.character(housing.sample@data$freguesia)=="Sao Nicolau" | 
    as.character(housing.sample@data$freguesia)=="Sacramento" | 
    as.character(housing.sample@data$freguesia)=="Santa Justa" | 
    as.character(housing.sample@data$freguesia)=="Santiago" | 
    as.character(housing.sample@data$freguesia)=="Santo Estavao" | 
    as.character(housing.sample@data$freguesia)=="Se" | 
    as.character(housing.sample@data$freguesia)=="Socorro", "1oBairro",  
    housing.sample@data$BairroZone) 
>  housing.sample@data$BairroZone <-  
    ifelse(as.character(housing.sample@data$freguesia)=="Santa Isabel" | 
    as.character(housing.sample@data$freguesia)=="Lapa" | 
    as.character(housing.sample@data$freguesia)=="Santos-o-Velho" | 
    as.character(housing.sample@data$freguesia)=="Prazeres" | 
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    as.character(housing.sample@data$freguesia)=="Santo Condestavel" | 
    as.character(housing.sample@data$freguesia)=="Alcantara" | 
    as.character(housing.sample@data$freguesia)=="Ajuda" | 
    as.character(housing.sample@data$freguesia)=="Sao Francisco Xavier" | 
    as.character(housing.sample@data$freguesia)=="Santa Maria De Belem",  
    "2oBairro", housing.sample@data$BairroZone) 
>  housing.sample@data$BairroZone <-  
    ifelse(as.character(housing.sample@data$freguesia)=="Benfica" | 
    as.character(housing.sample@data$freguesia)=="Campolide" | 
    as.character(housing.sample@data$freguesia)=="Sao Sebastiao Da Pedreira" | 
    as.character(housing.sample@data$freguesia)=="Nossa Senhora De Fatima" | 
    as.character(housing.sample@data$freguesia)=="Alvalade" | 
    as.character(housing.sample@data$freguesia)=="Sao Joao De Brito" | 
    as.character(housing.sample@data$freguesia)=="Campo Grande" | 
    as.character(housing.sample@data$freguesia)=="Sao Domingos De Benfica" | 
    as.character(housing.sample@data$freguesia)=="Carnide" | 
    as.character(housing.sample@data$freguesia)=="Lumiar" | 
    as.character(housing.sample@data$freguesia)=="Charneca" | 
    as.character(housing.sample@data$freguesia)=="Ameixoeira", "3oBairro",  
    housing.sample@data$BairroZone) 
>  housing.sample@data$BairroZone <-  
    ifelse(as.character(housing.sample@data$freguesia)=="Santa Maria Dos Olivais"  
    | as.character(housing.sample@data$freguesia)=="Marvila" | 
    as.character(housing.sample@data$freguesia)=="Beato" | 
    as.character(housing.sample@data$freguesia)=="Sao Joao" | 
    as.character(housing.sample@data$freguesia)=="Penha De Franca" | 
    as.character(housing.sample@data$freguesia)=="Sao Jorge De Arroios" | 
    as.character(housing.sample@data$freguesia)=="Sao Joao De Deus" | 
    as.character(housing.sample@data$freguesia)=="Alto Do Pina", "4oBairro",  
    housing.sample@data$BairroZone) 
>  housing.sample@data$BairroZone <- as.factor(housing.sample@data$BairroZone) 
>  housing.sample@data$BairroZone <- relevel(housing.sample@data$BairroZone,  
    ref="1oBairro") 

 

Using a conditional ifelse() statement, we can manually define four different areas of the 
city 1oBairro, 2oBairro, 3oBairro and 4oBairro – which are each a collection of mutually 
exclusive freguesia. This definition comes from the local authority and is broadly used in their 
administrative planning, but many different types of spatial fixed effect units can be used – 
large or small administrative boundaries; census tracts; transportation areas; postal codes; etc.  

In order to interpret this variable, we need to determine first what will be our reference location 
in the city. To properly include fixed effects in the regression, we must leave one category out 
(our reference) and the estimates we obtain for each other area represents the deviation in 
housing prices from that area relative to the reference area. The reference category can be 
anything, although we want to choose one which has a relatively high number of observations 
and one from which it intuitively makes sense to compare. 

The main downtown Pombaline-style architecture and grid-like pattern of dwellings, for which 
Lisbon is famous, is located in the Baixa – or the collection of freguesias given by 1oBairro. 
We can use this as our reference area and use the relevel() function to re-specify this so 
that in the model all results will be interpreted as the price difference relative to this core area 
of the city. 

We can again systematically build upon our previous model testing different ways to include 
combinations of parameters with the new spatial fixed effects. If there are spatial influences 
over space which impact housing prices – yet which we cannot easily measure with given data 
– then including these location variables should improve the model specification. 
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> OLS.spfe <- list() 
> OLS.spfe[[1]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.baixa) + BairroZone, na.action=na.omit,  
  data=housing.sample@data) 
> OLS.spfe[[2]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.tagus) + BairroZone, na.action=na.omit,  
  data=housing.sample@data) 
 
> OLS.spfe[[3]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.baixa) + ln.avgD.park + BairroZone,  
  na.action=na.omit, data=housing.sample@data) 
> OLS.spfe[[4]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.tagus) + ln.avgD.park + BairroZone,  
  na.action=na.omit, data=housing.sample@data) 
 
> OLS.spfe[[5]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.baixa) + lnPM10 + ln.avgD.park +  
  BairroZone, na.action=na.omit, data=housing.sample@data) 
> OLS.spfe[[6]] <- lm(ln.price ~ area + area.2 + new + parking + fireplace +  
  aircond + view + Ppop.unemp + log(dist.tagus) + lnPM10 + ln.avgD.park +  
  BairroZone, na.action=na.omit, data=housing.sample@data) 

Knowing we can easily export and compare many models directly, we can generate a collection 
of potential models. Still building up systematically, we can look at the impact of including the 
location fixed effects at all stages of the modelling. If the parameters of interest are the 
environmental locational variables, then it is easy to look at how the inclusion of a location 
fixed effect impacts the model and outputs when these environmental variables are included 
and are not included.  

As we control for more of the unobserved or unmeasured location effects – by including these 
fixed effects – then we should get more robust estimates for the true effect of the other 
parameters. So, if the model is specified correctly by the inclusion of locational spatial 
heterogeneity, then the parameter estimates on the other variables from this model are the most 
preferred estimates. 

Moving forward, we will consider that OLS.spfe[[6]] is our most preferred and complete 
model specification. From here on out, we will conduct the spatial diagnostics and models to 
this OLS specification. Once we have a preferred OLS specification of interest, then we must 
run the diagnostics to see if spatial dependence exists, and if so then we must correct this by 
estimating the appropriate spatial model. 
 
 
 

Exercises: 
 
Ex 09.01 – How could the inclusion of both location fixed effects and locational amenities (say 
the count of amenities) cause problems in the model? 

Ex 09.02 – How could interaction effects be used to look at the impact of, for example, having 
a new dwelling in the downtown area versus elsewhere in the city? 
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Lesson 10: Spatial Dependence - Generating and Visualizing Spatial Weights 

Up until now we have only been running (non-spatial) OLS estimation techniques. These OLS 
models have explicitly included spatial (GIS) variables and spatial fixed effects, but has yet to 
control for any spatial dependence or spatial heterogeneity in the data generating process. If 
spatial dependence exists in our data and is not corrected for, we will have a bias in our 
estimated results which may affect out interpretation and predictions from the model. 

The first step in spatial modelling is to specify what our spatial weight matrix is. This matrix, 
which is defined by us, is the NxN square matrix which defines the "neighbour relationship" 
between all variables. Depending on how we decide to define this relationship, we will have a 
matrix which connects each dwelling with all other dwellings that we consider to be its 
neighbor. 

Common ways of defining the weight matrix include: 

• {0, 1} identifier to specify whether a property is within some given distance of another 
property. 

• Weighted by inverse distance (closer properties have higher weights) or inverse square 
distance for properties within a given distance. 

• Using a given number of nearest neighbors (can be specified to be within a certain 
distance or not). 

We can specify and test all sorts of underlying neighbourhood definitions to make sure that our 
estimated results are robust and not sensitive to which matrix we choose. For our example, we 
will consider neighbours to be properties that are within 500 meters of each other, and also the 
20 nearest properties. 

We first must use the dnearneigh() function to identify all properties within 0.5 km (500 
meters) of each other, making sure again that we specify that longlat = TRUE to let the 
function know we have GPS coordinates. Then we can use the nbdists() function to 
determine the distances between our defined neighbours. 

 

> dist0.5 <- dnearneigh(coordinates(housing.sample), d1=0, d2=0.5, longlat=TRUE) 
> neigh.dist <- nbdists(dist0.5, coordinates(housing.sample), longlat=TRUE) 

 

Different metric systems can also be used – the default is calculated in meters however 
a simple conversion can be used by converting using 1 meter = 0.00062 miles. 

We can now define our weight matrix. The weight matrix object in R is called a listw and 
what we have obtained above is called a neighbourhood (nb) object. We transform our nb into 
a listw using the nb2listw() function. Since we have some connections that may have 
zero neighbours (i.e. not within 500 meters of another dwelling in our sample), then we need 
to specify the option that zero.policy = TRUE. 
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Simply inserting the nb object which identifies all objects within 500 meters of each other, 
dist0.5, into the nb2listw() function (SW1) returns a spatial weight of {0, 1}; and 
inserting the knn2nb() function where k = 20 is the number of neighbours (SW3), gives 
us the nearest neighbour matrix. If we want to weight the neighbours by distance, we specify 
in the glist option that we are weighing each neighbourhood link by 1/x (SW2). We further 
need to specify that style="W" to indicate that we want our spatial weight matrix to be row-
standardized. 

 
> SW1 <- nb2listw(dist0.5, style="W", zero.policy=TRUE) 
> SW2 <- nb2listw(dist0.5, glist = lapply(neigh.dist, function(x) (1/x)),  
  style="W", zero.policy=TRUE) 
> SW3 <- nb2listw(knn2nb(knearneigh(coordinates(housing.sample), k=20)),  
  zero.policy=TRUE) 
 
> summary(SW1, zero.policy=TRUE) 
# ... 
> summary(SW2, zero.policy=TRUE) 
# ... 
> summary(SW3, zero.policy=TRUE) 
# ... 

 
 
> plot(census.freguesias) 
> plot(SW1, coordinates(housing.sample), add=T, col="grey") 
# ... 
> plot(census.freguesias) 
> plot(SW3, coordinates(housing.sample), add=T, col="grey") 
# ... 

 
 

 

 

Exercises: 

Ex 10.01 – Why are we not plotting SW2? What is the difference between SW1 and SW2? 
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Ex 10.02 – How could we define a spatial weight matrix that uses every other dwelling as a 
potential neighbour? Try using the inverse distance to each other property in the sample as 
another type of spatial weight. 

Lesson 11: Spatial Diagnostics and Model Selection 

For each of our chosen spatial weight matrices we must now run the diagnostics to test whether 
(conditional on our definition of neighbours) there is any unaccounted for spatial correlation in 
the data. 

There are two sets of spatial diagnostics that we must run, the first being the Moran I and the 
second being the Lagrange Multiplier tests for spatial dependence. 

The Moran I test is a test of general spatial dependence. This tells us whether or not we have 
significant clustering of our data points (and values) across space. There are two ways to test 
the Moran I statistics in R - we could first look at applying the statistic directly to the values of 
a variable (log price) over space and specifying the spatial weight matrix. This would tell us 
whether or not we see any significant clustering of housing prices, the dependent variable, over 
space (i.e., whether we observe higher priced dwellings located closer to other higher priced 
dwellings, and vice versa). To test the spatial clustering of the dependent variable directly, we 
use the moran.test() function. 

The second way in which we can test for general spatial dependence using the Moran I is to 
apply the statistic to the residuals of the preferred OLS specification. This would tell us whether 
or not our OLS model is appropriately capturing all the spatial dependence in the data. If the 
OLS model was sufficient, then we wouldn't expect there to be any significantly correlation 
across space coming from the leftover residuals of the model. 

The moran.test() function from above is only appropriate to use for checking spatial 
dependence in a variable. To correctly check for spatial dependence in the residuals, we need 
to take into account that we have estimated a linear model and we use the lm.morantest() 
function applied to the model of interest. 

We are specifying a few different parameters. Firstly, we specify neighbourhood relationship 
which we define according to our different spatial weight matrices. The 
alternative="greater" test hypothesis means that we are testing whether we have 
significant positive spatial clustering - high prices clustered closer to other high price 
dwellings. Lastly, we are also specifying that zero.policy=TRUE. We need to specify this 
in cases where dwellings potentially have zero neighbours in order to avoid getting an error. 

 
> global.model <- OLS.spfe[[6]] 
 
> moran.test(housing.sample@data$ln.price, listw=SW1, alternative="greater",  
  zero.policy=TRUE) 
# ... 
> lm.morantest(global.model, listw=SW1, alternative="greater", zero.policy=TRUE) 
# ... 
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> moran.test(housing.sample@data$ln.price, listw=SW2, alternative="greater",  
  zero.policy=TRUE) 
# ... 
> lm.morantest(global.model, listw=SW2, alternative="greater", zero.policy=TRUE) 
# ... 
 
> moran.test(housing.sample@data$ln.price, listw=SW3, alternative="greater",   
  zero.policy=TRUE) 
# ... 
> lm.morantest(global.model, listw=SW3, alternative="greater", zero.policy=TRUE) 
# ... 

 
 
 
> moran.plot(housing.sample@data$ln.price, SW2, zero.policy=FALSE) 
# ... 
> moran.plot(global.model$residuals, SW1, zero.policy=TRUE) 
# ... 

 
Moran I: SW2 (Dep.)                                                             Moran I: SW1 (Error) 

 

 

We are always concerned about spatial dependence which may be influencing our model via 
the dependent (price) variable, or spatial dependence which may be influencing our model via 
the error (unobservable) component. While the above Moran I tests give an indication on 
whether significant dependence exists, we do not have much information on specifically where 
this dependence exists - from the dependent variable or from the unobserved error. 

We run LM test statistics for spatial dependence which takes into account the testing of both 
types of spatial dependence simultaneously. These sets of tests provides five different test 
statistics: 
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• LM Error - indicates whether significant spatial dependence exists through the error 
term. 

• LM Lag - indicates whether significant spatial dependence exists through the lag of the 
dependent variable. 

• Robust LM Error - indicates whether significant spatial dependence exists through the 
error term while simultaneously controlling for spatial dependence from the spatial lag 
of the dependent variable. 

• Robust LM Lag- indicates whether significant spatial dependence exists through the lag 
of the dependent variable while simultaneously controlling for spatial dependence from 
the error term. 

• Joint Error and Lag - indicates whether significant spatial dependence exists jointly 
from both the error and lag component. 

The results of these test statistics will determine which (if any) spatial model is appropriate to 
estimate. If the test statistics on the lag component (and robust version) are significant and 
outweigh the error test statistics, then we should be estimating a spatial lag (autoregressive) 
model (SAR). If the test statistic on the error component (and robust version) are significant 
and outweigh the lag test statistics, then we should be estimating a spatial error model (SEM). 

If both robust versions of the test are significant, and the joint test is also significant, then a 
joint spatial autoregressive mode with autoregressive errors (SARAR) is appropriate. 

 
> lm.LMtests(global.model, listw=SW1, test="all", zero.policy=TRUE) 
# ... 
> lm.LMtests(global.model, listw=SW2, test="all", zero.policy=TRUE) 
# ... 
> lm.LMtests(global.model, listw=SW3, test="all", zero.policy=TRUE) 
# ... 

 

Exercises: 

Ex 11.01 – Is it necessary to specify the zero.policy=TRUE option for the SW3 weight 
matrix? Why or why not? 

Ex 11.02 – Knowing that the Moran I plot is simply a scatter plot of the dependent variable 
and it’s spatial lag, how can we manually plot this in ggplot using the code  
lag.listw(SW3, housing.sample@data$ln.price, zero.policy=TRUE, NAOK=TRUE)  
to manually generate a value of the spatial lag directly in the database. 

Ex 11.03 – Compare the spatial diagnostics with and without the location fixed effects 
BairroZone included in the global model. Does the inclusion of these fixed effects influence 
the spatial dependence in the model? 

Ex 11.04 – Could we use lapply to speed up the running of the Moran I and LM Spatial Test 
diagnostics? – As opposed to coding each model (lag) separately. 
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Lesson 12: Models of Spatial Dependence (SEM, SAR, SARAR) 

Now that we have tested (and confirmed) that spatial dependence exists in our data, we can use 
the diagnostics above to decide which of the spatial models are the most appropriate to estimate. 
We will focus on three advanced spatial models which differ in terms of through which channel 
(dependent variable or residuals) the spatial dependence is observed. 

The first will be the Spatial Error Model (SEM). This model accounts for spatial dependence 
which is observed through the error term. This model has the assumption that there are 
remaining underlying spatially varying influences which are missing from the model but are 
important to include. Some examples which could arise in the housing price specification that 
we are interested in includes omitted spatial variables such as controlling for areas of the city 
which are more prone to crime, with many derelict buildings, or with significant cultural or 
historic difference. 

It is always advised to control for as many locational aspects as possible, or by including 
appropriate spatial fixed effects to capture these underlying influences. It may not always be 
possible to include a large number of control variables if the sample size of the data is small, 
and so it is important to always check and correct for these unobserved spatial influences which 
would be picked up by the error term. The SEM specification has the following format: 

 
ln(P) = β0 +  β1*X +  β2*N +  β3*L +  β4*F + λWε + u 

Where the standard error component is now broken down into two parts - the first which is 
capturing the spatial network connections by pre-multiplying by our spatial weight matrix W 
and with a respective estimated spatial spillover parameter of λ. The second component of the 
error term is a normally distributed part, u. 

A Note on The Spatial Weight Matrix: 

When we multiply any variable vector by the spatial weight matrix, for example Wx, what we 
receive is the average value of x from all my neighbours - depending on how these neighbours 
are defined. We row-standardize our weight matrix, so each element in the weight matrix 
represents the percentage of my entire network that each neighbour takes up. So if I have 4 
neighbours for example and our definition of neighbours is a {0, 1} indicator, then each 
neighbour receives a weight of 25% and the value of  Wx will be 25% of the value of x for each 
neighbour. If we instead use a distance based weight, then these proportions will be weighted 
by the proximity of dwellings. 

The errorsarlm() function estimates a maximum likelihood estimation of spatial 
autoregressive error models. Importantly, we need to specify the spatial weight matrix that we 
are considering and also use the method parameter to specify how the function should handle 
the inversion of the weight matrix to estimate the parameters. We are saying to use a Monte 
Carlo (MC) approach to estimate the eigenvalues to use for the inversion. For small databases, 
there may be no difference between using an estimation to run the inversion, but in larger sets 
the difference between trying to calculate the eigenvalues directly or using an approximation 
could be a difference of days in the estimation. 
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We can also test and control for heteroskedasticity in spatial models to make sure the variance 
in the residuals is not driving any estimated impacts. We do this with the spatial version of the 
Breusch-Pagan test statistics, and if necessary implement robust standard errors using the 
coeftest() function as specified. 

 
> SEM.SW3 <- errorsarlm(global.model, data=housing.sample, listw=SW3,  
  method="MC", zero.policy=TRUE, na.action=na.omit) 
> bptest.sarlm(SEM.SW3) 
# ... 
> coeftest(lm(SEM.SW3$tary ~ SEM.SW3$tarX - 1), vcov=vcovHC(lm(SEM.SW3$tary ~  
  SEM.SW3$tarX - 1), type="HC0"), df=Inf) 
# ... 
> summary(SEM.SW3) 
# ... 

 
For each spatial model, specific or additional diagnostics can be generated to compare the 
spatial model to its OLS equivalent. If the model is correctly controlling for the spatial 
influences, then we should see an improvement in the model fit relative to the OLS versions – 
in terms of the SSE, AIC, Log-Likelihood among others. 
 
> SEM.SW3$SSE 
# ... 
> SEM.SW3$s2 
# ... 
> SEM.SW3$LL 
# ... 
> SEM.SW3$logLik_lm.model 
# ... 
> AIC(SEM.SW3) 
# ... 
> SEM.SW3$AIC_lm.model 
# ... 

 

The second model we will look at is the Spatial Lag Model, also known as the Spatial 
Autoregressive Model (SAR). This model captures direct spatial dependence in the dependent 
variable, in our case the log of housing prices. If our dependent variable exhibits spatial 
correlation, then we must correct it by modelling directly the spatial lag. This type of 
mechanism might occur if there is a direct relationship between the price setting behaviour 
across space - if for example price setters (realtors) use the price of neighbouring dwellings in 
determining what price to set for their dwelling. The SAR specification has the following 
format: 

 
ln(P) = β0 +  β1*X +  β2*N +  β3*L +  β4*F + ρWln(P) + ε 

 

Here we are directly including a lag of the dependent variable, Wln(P). The parameter ρ 
captures the strength of the direct spatial spillover between property values. 
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The lagsarlm() function is used to obtain the maximum likelihood estimation of the spatial 
autoregressive lag model, where again we are estimating this for the SW1 matrix and 
specifying that we use a Monte Carlo process to invert our weight matrix and obtain the 
eigenvalues. 

One difference between the Spatial Error and the Spatial Lag model is in the interpretation of 
the estimates. Notice that in the SAR model we have a lag of the dependent variable which we 
do not have in the SEM model. The parameter estimates that we get from these sorts of models 
represent the impact on housing prices that a change in a structural or locational characteristic 
would have. Because this change in a structural characteristic would influence price, and price 
is further located directly in the model, there is a sort of feedback effect that we need to account 
for. 

We can use the trace of the weight matrix to decompose the estimated effects from these models 
into a direct effect which comes from the variable of interest, and an indirect effect which 
comes from this feedback effect. Whenever the direct spatial lag is included in the model, it is 
necessary to decompose the effect into direct and indirect effects in order to have the correct 
interpretation. We decompose these effects using the impacts() function and specifying 
how to obtain the trace of our matrix. 

 
> SAR.SW3 <- lagsarlm(global.model, data=housing.sample, listw=SW3, method="MC",  
  zero.policy=TRUE, na.action=na.omit) 
> bptest.sarlm(SAR.SW3) 
# ... 
> coeftest(lm(SAR.SW3$tary ~ SAR.SW3$tarX - 1), vcov=vcovHC(lm(SAR.SW3$tary ~  
  SAR.SW3$tarX - 1), type="HC0"), df=Inf) 
# ... 
> summary(SAR.SW3) 
# ... 
> impacts(SAR.SW3, tr=trW(forceSymmetric(as(SW3, "CsparseMatrix")), m=50, p=100,  
  type="MC"), zstats=T) 
# ... 

 
 
> SAR.SW3$SSE 
# ... 
> SAR.SW3$s2 
# ... 
> SAR.SW3$LL 
# ... 
> SAR.SW3$logLik_lm.model 
# ... 
> AIC(SAR.SW3) 
# ... 
> SAR.SW3$AIC_lm.model 
# ... 

 

Lastly, we can specify the joint Spatial Autoregressive Model with Autoregressive Errors 
(SARAR) model. This specification includes both a direct spatial spillover effect coming from 
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the dependent variable and an error component capturing the indirect unobservable 
characteristics. The SARAR specification is written as follows: 

 
ln(P) = β0 +  β1*X +  β2*N +  β3*L +  β4*F + ρWln(P) + λWε + u 

If there is reason to believe that both types of spatial autocorrelation exists (dependent and 
error), and if the joint LM diagnostics are significant, then there is rationale behind using the 
SARAR model. 

Since there is a direct lag of the dependent variable included in this specification, we must also 
decompose the total effects here into the direct and indirect effects, as completed in the SAR 
specification. 

 
> SARAR.SW3 <- sacsarlm(global.model, data=housing.sample, listw=SW3,  
  method="MC", zero.policy=TRUE, na.action=na.omit)  
> bptest.sarlm(SARAR.SW3) 
# ... 
> coeftest(lm(SARAR.SW3$tary ~ SARAR.SW3$tarX - 1), vcov=vcovHC(lm(SARAR.SW3$tary  
  ~ SARAR.SW3$tarX - 1), type="HC0"), df=Inf) 
# ... 
> summary(SARAR.SW3) 
# ... 
> impacts(SARAR.SW3, tr=trW(forceSymmetric(as(SW3, "CsparseMatrix")), m=50,  
  p=100, type="MC"), zstats=T) 
# ... 

 
 
> SARAR.SW3$SSE 
# ... 
> SARAR.SW3$s2 
# ... 
> SARAR.SW3$LL 
# ... 
> SARAR.SW3$logLik_lm.model 
# ... 
> AIC(SARAR.SW3) 
# ... 
> SARAR.SW3$AIC_lm.model 
# ... 

 

Exercises: 

Ex 12.01 – While we only conduct the spatial model for one of our weight matrices of interest 
(SW1), we should in fact check that our estimated values do not vary significantly or change 
signs from one model to another. The choice of spatial weight definition should not 
significantly change the results. Compare the estimates using the SW2 or SW3 spatial weights. 

  



 

40 
 

References, Resources for R  
 
R Website………………………………………….....................…..https://www.r-project.org/ 
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Cheat sheets with relevant functions and usages for all sorts of applications in R: basic 
functions, data cleaning, working with variables/ characters, data visualization, 
mapping, etc. 

 
"R For Data Science" by Wickham & Grolemund……..........https://r4ds.had.co.nz/index.html 

Great (free) online text detailing step by step instructions for cleaning, organizing and 
working with different types of data in R. 

 
"Spatial Regression Analysis in R" by Anselin 
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Detailed blog outlining how to work with and use spatial data in R, focusing on the sp 
and sf packages. 
 

"Intro to GIS and Spatial Analysis" by Manuel Gimond 
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